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ABSTRACT 
 

 Moment distributions have a vital role in mathematics and statistics, in particular in 
probability theory, in the perspective research related to ecology, reliability, biomedical 
field, econometrics, survey sampling and in life-testing. Hasnain (2013) developed an 
exponentiated moment exponential (EME) distribution and discussed some of its 
important properties. In the present work, we propose a generalization of EME 
distribution which we call it generalized EME (GEME) distribution and develop various 
properties of the distribution. We also present characterizations of the distribution in 
terms of conditional expectation as well as based on hazard function of the GEME 
random variable. 
 

KEYWORDS 
 

 Survival function; hazard rate function; information generating function; 
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1. INTRODUCTION 
 

 If  F x  is a cdf (cumulative distribution function), then [ ( )]F x 
 is a cumulative 

exponentiated distribution (ED) function, where 0   is the exponentiated parameter. 

Rao (1965) extended the basic idea of Fisher (1934) and introduced moment or weighted 
distributions. The moment distribution deals in the perspective of unequal probability 
sampling. Gompertz (1825) used the cdf to compare the known human mortality tables 

and represented population growth, i.e., )(1 xe    Later on, Gupta et al. (1998) 

introduced a distribution by setting 1  . To study the theoretical properties of 

Gompertz (1825) family, three parameters of location, scale and shape were introduced to 
generalize exponential distribution in comparison with gamma and Weibull distributions, 
(see also Gupta and Kundu, 1999, 2000, 2001, 2004 and 2005 where they discussed 

various properties of [ ( )]F x 
). Gupta and Kundu (2005) estimated  P X Y , where X  

and Y  are two independent generalized exponential random variables.  
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 Employing exponentiated gamma distribution, Shawky and Bakoban (2008) studied 

the lower record values and derived explicit expressions for the single, product, triple and 

quadruple moments. Raja and Mir (2011) conducted a numerical study by taking the 

eight distributions namely gamma, Weibull, lognormal, Gumble, exponentiated Weibull, 

exponentiated exponential, exponentiated lognormal and exponentiated Gumble and have 

fitted the distributions to two real life data sets. 
 

 Dara (2012) proposed cdf of moment exponential distribution and developed some 

basic properties such as moments, skewness, kurtosis, moment generating function and 

hazard function. Hasnain (2013) proposed exponentiated moment exponential (EME) 

distribution with cdf given by 

    1 1  e  0

x
x

F x x





  
     
   

             (1.1) 

 

where  and    are positive real parameters, and established certain properties of EME 

distribution. 
 

 The presentation of the content of this work is as follows: Section 2 deals with cdf and 

pdf (probability density function), survival function, hazard rate function and graphs for 

GEME distribution. Moments, mode, median, information generating function of GEME 

distribution are discussed in Section 3. In Section 4 certain characterizations of GEME 

distribution are presented in terms of conditional expectation and hazard function. Some 

remarks are presented in Section 5. An empirical study has been conducted and discussed 

in Section 6 and tables of percentile for selected values are given in Section 8. Finally 

concluding remarks are provided in Section 8. 

 

2. PROPERTIES OF GENERALIZED EXPONENTIATED  

MOMENT EXPONENTIAL DISTRIBUTION 

 

 We introduce the GEME distribution with cdf given by 
 

     1 1  e  0

x
x

G x x

 

 


 
          

 

            (2.1) 

 

where ,   and     are positive real parameters. 
 

 The three-parameter GEME distribution will be quite effectively used in analyzing 

several lifetime data, particularly in place of three-parameter gamma distribution, three-

parameter Weibull distribution or three-parameter exponentiated exponential distribution. 

The GEME distribution produces many distributions via special transformations. 
 

 The pdf of GEME distribution is 

    

1

2 1

2

 
1 1  e e     0,  , , >0

x x
x

g x x x

 

  
 

 
                 

     (2.2) 
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 Here  and    are the shape parameters and   is the scale parameter. The graph of 

(2.2) is given in Fig (1). For some values of parameters, the GEME has heavy tail which 

needs to be treated with care.  
 

 The pdf  g x  will reduce to that of EME distribution via transformation y x  or 

by choosing 1  . For 1    , (2.2) is the size biased exponential distribution 

developed by Dara (2012). 

 

 
Fig. 1: Probability Density Function of the Generalized EME Distribution  

for the Indicated Values of ,   and     

 

 
Fig. 2: Probability Density Function of the Generalized EME Distribution  

for the Indicated Values of ,   and     

 

2.1 Hazard Rate Function 
 Hazard rate function arises in the analysis of the time to the event and describes the 

current chance of failure for the population that has not yet failed. This function plays a 

pivotal role in reliability analysis, survival analysis, actuarial sciences, demography, 

extreme value theory and duration analysis in economics and sociology. It is very 
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important for researchers and practitioners working in the areas like engineering statistics 

and biomedical sciences. Hazard rate function is very useful in defining and formulates a 

model when dealing with lifetime data. 
 

 For the GEME distribution, hazard rate function takes the form 

  

 
 

 

1

2 1

2

 
1 1  e e

  0,  , , >0
1

1 1 1  e

x x

x

x
x

g x
h x x

G x
x

 





  
 



 


 
            

     
  

 
         

  (2.3) 

 

 Figure 3 below presents the graph of hazard (failure) rate function for selected values 

of ,   and    . An increasing or decreasing hazard rate is frequently used to model 

survival and failure time data. The failure rate function is upside-down bathtub shaped. 

The graph of the function is termed as upside-down bathtub shaped as it is first increasing 

and then decreasing, with a single maximum. An important class of models for failure 

due to fatigue or deterioration is formed by these functions. 
 

 
Fig. 3: Hazard Rate Function of the Generalized EME Distribution  

for the Indicated Values of ,   and     

 

2.2 Survival Function 
 The branch of statistics that deals with the failure in mechanical systems is called 

survival analysis. In engineering, it is called reliability analysis or reliability theory. In 

fact the survival function is the probability of failure by time y , where y  represents 

survival time. We use survival function to predict quantiles of the survival time. Survival 

function, by definition, is  
 

    1 1 1   , , >0

x
x

S x e

 

 


 
             

 
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Fig. 4: Survival Function of the Generalized EME Distribution  

for the Indicated Values of ,   and     

 

 
Fig. 5: Survival Function of the Generalized EME Distribution  

for the Indicated Values of ,   and     

 

2.3 Moments 
 Suppose X  is a GEME random variable, then 
 

  

1

2 1

2
0

1 1

x x

s sx
E X e x e dx

 

  
  

 
               

 

  

     

  
11

0

1 1

s

s t tt e t e dt
 

       

 

 Assuming 1   and using binomial expansion, we arrive at 
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   
 

 

/

/ 2
1 1

/ 21
1    , , 0 

1

i is s

j s
i j

j si
E X

i j i




 
 

     
           

   
     (2.4) 

 

 Since (2.4) is a convergent series for 0s  , all the moments exist for integer values of 

 . The equation (2.4) can be represented as a finite series representation. Therefore, by 

setting different values of 1,2,3s   and 4, we obtain the first, second, third and fourth 

moment about zero. 

 

2.4 Information Generating Function 
 The information generating function for GEME distribution is 
 

  

       
1

0

 

s
s

H f E f X f x dx
  

  


 

     
 

    21

0 0

1
1 2    , 0

     

i i s js s

i j

s i
s j s i

ji

  

 

   
          

  
   (2.5) 

 

 The Shannon entropy can be found by  
1s

d
H f

ds 
. 

 

2.5 Factorial Moments and Mode 
 The factorial moments of GEME distribution random variable X  are as follows  
 

  

         
0

1 2 ... 1 ,
r

k

k

E X X X X r S r k E X


       for r Z   

 

where  ,S r k  is the Stirling number of first kind and  kE X  is defined at (2.4). 

 

 The mode of GEME distribution is found by solving   0g x   or 

  

 
  2

2 1
2 1 0

1 1

x

x

e x
x

x
e













  
      

 
        

 

          (2.6) 

 When 1  , the mode equation reduces to 2 1 0
x x

x x e e
 

 
    

       
    

, which 

provides mode(s). The modes are being showed graphically for different values of 

,   and    . 
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Fig. 6: Mode=1, when  =1,  =1,  =1. Mode=2, when  =1,  =2,  =1. 

  Mode=3, when  =1,  =3,  =1. Mode=4, when  =1,  =4,  =1. 

 

 For  =1, the pdf is uni modal for each set of values and for 1   (2.6) can be solved 

iteratively for the values of x . 

 
2.6 Median 

 The median is obtained by solving  2 1 0G M    or 

   

1

1 1 2 0

M
M

e



 
 
  
           

              (2.7) 

 

where G  is the cdf of GEME distribution defined in (2.1). Tables (in the Appendix) 

represent different values of the median for different values of ,   and    . Value of the 

median increases for increasing   when   and   are fixed and similar results are 

obtained for increasing   when   and   are fixed. However, the value of the median 

decreases when   increases when   and   are fixed. 

 

3. CHARACTERIZATIONS 
 

 In designing a stochastic model for a particular modeling problem, an investigator 

will be vitally interested to know if their model fits the requirements of a specific 

underlying probability distribution. To this end, the investigator will rely on the 

characterizations of the selected distribution. Generally speaking, the problem of 

characterizing a distribution is an important problem in various fields and has recently 

attracted the attention of many researchers. Consequently, various characterization results 

have been reported in the literature. These characterizations have been established in 

many different directions. The present work deals with the characterizations of GEME 

distribution based on: (i) conditional expectation of certain functions of the random 

variable; (ii) hazard function of the random variable. 
 

           g 
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3.1 Characterizations based on Conditional Expectation 
 

Proposition 3.1.1  

 Let  : ,X a b  be a continuous random variable with cdf G and pdf g. Let 

 ,C a b  and  1 ,C a b
 
such that  

 

   

b

a

u
du

u u


 

 
  and   0g a  . Then  

 

  
      | ,         t ,E X X t t a b                (3.1.1) 

 

implies  

  

 
 

   
exp ,     

b

x

t
G x dt x a

t t

 
   

   
            (3.1.2) 

 

Proof:  
 From (3.1.1) we have 
 

           G ,     for t ,
t

a

u g u du t t a b     

 

 Differentiating both sides of the above equation with respect to t  and using 

  0g a 
 
we have 

 

  
 

 

 

   

g t t

G t t t



 

                 (3.1.3) 

 

 Now, integrating both sides of (3.1.3) from    to x x a  , we arrive at (3.1.2). 

 

Remarks 3.1.2:  

(a)  Let 1, 2, ,...n n n nX X X    be n  order statistics from a continuous cdf G. In view of 

Proposition 3.1.1 we can make the following statement in terms of certain functions 

of the thn  order statistic. Under the conditions of Proposition 3.1.1, 

 

       , ,| ,       ,n n n nE X X t t t a b     
 

 

 

 Implies 

   
 

   
exp ,     

b

x

t
G x dt x a

t t

 
   

   
  

 

(b) Taking    , 0,a b   ,   1

x
x

x e





 

     
 and     

1
1

1
x x  


, we have 

from (3.1.2)  
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    1 1  , 0.

x
x

G x e x

 




 
 

          

 

 This gives a characterization of GEME distribution in terms of the conditional 

expectation of a special function of the GEME distribution random variable X . 

 

(c) One can use (a) above to give a characterization of generalized EME distribution in 

terms of the conditional expectation of certain function of the thn  order statistic. 
 

Proposition 3.1.3.  

 Let  : ,X a b  be a continuous random variable with cdf G and pdf g. Let 

 1 ,C a b  be a non-increasing function such that  lim 1
x a

x


   and  lim 0
x b

x


   then 

 

    | (1- ) ( ),       ( , ),E X X t c    c  t  t  a b                (3.1.4) 
 

where 0 1c  , implies 
 

     
1

1 ,         
c

cG x x x a


                 (3.1.5) 

 

Proof:  

 From (3.1.4) we have 
 

  
t

1 ) for      
a
ψ (u)g (u)du = (c + (  - c ψ (t))G(t) ,      t  (a,b)  

 

 Differentiating both sides of the above equation with respect to t  results in 
 

  

 

 

   

  
1

1

g t c t

G t c t

 


 
                 (3.1.6) 

 

 Now, integrating both sides of (3.1.6) from    to x x a  , we arrive at (3.1.5) 

 

Remarks 3.1.4:  

(d) Taking    , 0,a b    ,   1

x
x

x e





 

     
 and 

1

1
c 

 
, we have from (3.1.5) 

  

  1 1  e , 0

x
x

G x x

 

 


 
          

 

 

 This also gives a characterization of GEME distribution in terms of the conditional 

expectation of a special function of the GEME distribution random variable X . 

 

(e) Statements similar to (b) and (c) of Remarks 3.1.2 can be given here as well. 
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3.2 Characterization based on hazard function 

 For the sake of completeness, we state the following definition. 

 

Definition 3.2.1 

 Let G be an absolutely continuous distribution with the corresponding pdf g. The 

hazard function corresponding to G is denoted by Gn  and is defined by 
 

  

 

 
         ,

1
G

g x
n x SuppG

G x
 


             (3.2.1) 

 

where Supp G is the support of G. 
 

 It is obvious that the hazard function of twice differentiable function satisfies the first 

order differential equation  
 

  
 

 
    ,G

G
G

n x
n x x

n x


    

 

where  x  is an appropriate integrable function. Although this differential equation has 

an obvious form since 
 

  
 

 

 

 
 G

G
G

g x n x
n x

g x n x

 
   (3.2.2) 

 

for many univariate continuous distributions (3.2.2) seems to be the only differential 

equation in terms of the hazard function. The goal of the characterizations based on hazard 

function is to establish a differential equation in terms of hazard function, which has as 

simple form as possible and is not of the trivial form (3.2.2). For some general families of 

distributions this may not be possible. Here we present a characterization of the GEME 

distribution based on a nontrivial differential equation in terms of the hazard function. 

 

Proposition 3.2.1 

 Let  : 0,X    be a continuous random variable. The pdf of X is (2.2) if and only 

if the hazard function  Gn x  of  
1

( )G x F x     0   satisfies the differential equation 
 

  

     
2

2 21
2 1 ,  0G Gn x x x n x x     

      
  

        (3.2.3) 

 

for , 0   . 

 

Proof: 

 If X has pdf (2.2), then clearly (3.2.2) holds. Now, if (3.2.3) holds, then 
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 
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from which we have 

  
 

2
1 21

1 ,
G

x
x

n x


 

 
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   
1
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2
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x
n x x





 

     

              (3.2.4) 

 

 Integrating both sides of (3.2.4) from 0 to x , we arrive at 
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




 
 
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 From the last equality, we obtain 

  

 1 1

x
x

G x e





 

     
 

 

from which, we have 

      1 1  e , 0

x
x

F x G x x

 

  

 
              

 

 

Remark 3.2.2 

 Note that  G x  is an exponentiated cdf with base cdf  F x  and the exponent 
1


. 

 

4. MAXIMUM LIKELIHOOD ESTIMATOR OF  

GEME DISTRIBUTION’S PARAMETERS 
 

 In what follows, we discuss the estimation of the LL (Log Likelihood) class 

parameters. Let 1 2, ,... nX X X  be a random sample with observed values 1 2, ,..., nx x x  
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from GEME distribution. Let  , ,      be the parameter vector. The LL function 

based on the observed random sample of size n  is obtained from 
  

  

 

1

2 1

2
1

, , , 1 1  e  e ,    

x xn n n

obs n
j

x
l x x

 
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 
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 
               

 

      (4.1) 

and 

      ln , , ,  ln 2 ln ln 2 1 lnobs

x
l x n n n x



          



   

          1 ln 1 1  e

x
x



 


 
           

 

       (4.2) 

 

 Taking partial derivatives with respect to ,  and     respectively from  4.2 , we 

have 
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ln 1 1  e
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

 


      
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         (4.3) 
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 From (4.3) the asymptotic variance of  when  and  are fixed  
 
is 

 

  

 
  

2

2

2

1
ˆ

ln , , , obs

V
nl x

E


   

    
 

 
 

 

 

 The MLE (Maximum Likelihood Estimate) of  , say ̂ , is obtained by solving the 

nonlinear system. The solution of this nonlinear system of equations does not have a 

closed form, but can be found numerically by using software such as MATHEMATICA, 

MAPLE and R. 
 

 For interval estimation and hypothesis tests on the model parameters, we require the 

3×3 information matrix containing second partial derivatives of  (4.3)–(4.5) Under the 

regularity conditions stated in Cox and Hinkly (1974), that are fulfilled for our model 

whenever the parameters are in the interior of the parameter space, we have that the 

asymptotic distribution of  ˆn   to be a multivariate normal   1
3 0,N A  , where 

   1
nlimnA I

    is the information matrix. 
 

 We conclude this section by expressing ̂  in terms of a random variable T   whose 

distribution will be derived in the next section. 
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   

  

5 DISTRIBUTIONS OF iT  AND T   
 

 The following remarks and a theorem illustrate the distributions of iT  and T  . 

 

5.1 Remarks 

 The following conclusions can be obtained easily which we present them as remarks. 

1) If  ~  distribution ,X GEME    with   known, then ln 1 1

x

i

x
T e



 


 
 

          

 

follows  Exp  . 
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2)  ~ ,T Gamma n   ~  distribution ,T GEME    
 

3) ~ Gamma , .iT
T n

n n

 
  

 


 

 

4) In view of (2), 
1

~ Inverted Gamma
T 

. 

 

5) If 1 2, ,... nX X X  are i.i.d. (independently and identically distributed) Gamma   ,,n  

then the ith transformed ordered failures are i.i.d.  Exp  . 
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5.2 Moments of 
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Theorem 5.2.1 

 Let 1 2, ,... nX X X  be i.i.d. random variable with cdf F and let  n
X  be the thn  order 

statistic. Consider the sequence of random variables  1n nY F X     The limiting 

function of nY  0nY   is nY
e
 for 0   and n . 

 

Proof:  

 The pdf of  n
u X  is 

 

  
     

1n
g u n F u f u


     

    

  1 1

2 1

2
1 1

n
u un u

g u e u e

 
 

  
 

  
         

 

 

 Let 1 1 1
u

nY u
e

n




 


  
         

 



Zafar Iqbal et al. 551 

 

 Differentiating the above equation with respect to u , we obtain 
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 Letting n , we arrive at   
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6 APPLICATION 
 

 To illustrate the performance of our distribution, an example of tree circumferences in 

Marshall. Minnesota (based on data from Rice, 1999), has been considered in this 

section. 
 

 The observed values after arranging them are: 1.8, 1.8, 1.9, 2.4, 3.1, 3.4, 3.7, 3.7, 3.8, 

3.9, 4.0, 4.1, 4.9, 5.1, 5.1, 5.2, 5.3, 5.5, 8.3, 13.7. 
 

 Clearly, the data is right skewed. Walfram Mathematica 7.0 has been used for 

estimating the parameters by employing the method of maximum likelihood and chi-

square test for goodness-of-fit. The estimates of the parameters and chi-square goodness-

of-fit test are provided in the following tables. 

 

Table 6.1 

Parameter Estimates for the Tree Measurements Data Assuming Different Models 

Gamma 

 , r  
 ,IG    

Log-normal 

 ,   
 ,EME    

generalized− 

 , ,EME     

ˆ 0.6798    ˆ 13.976   ˆ 1.371   ˆ 1.341    ˆ 1.023    

ˆ 0.6791r   ˆ 4.537   ˆ 0.532   ˆ 2.3045   ˆ 2.1101   

    ˆ 1.1568   
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Table 6.2 

Comparison Criteria (Chi-Square Test for Goodness-of-Fit) 

 
Gamma 

 , r  
 ,IG    

Log-normal 

 ,   
 ,EME    

generalized− 

 , ,EME     

Test Statistic 7.243 6.383 5.825 5.486 4.453 

Critical value 7.82 7.82 7.82 7.82 7.82 

p-value 0.063 0.091 0.195 0.243 0.352 

 
 From the chi-square goodness-of-fit test, we observed that the GEME distribution, 
EME distribution and gamma model fit the tree measurements data reasonably well. 
However, model GEME distribution produces the highest p-value and therefore fits better 
than EME, log-normal, IG and gamma distributions. 
 

7. PERCENTILES 
 

 In this section percentage points of the distribution are computed with pdf given in 

(2.2). For any 0 1p  , the 100p th  percentile (also called the quantile of order p ) is 

a number px  such that the area under the curve of the pdf given in (2.2) to the left of px  

is p
 
that is px  is the root of the equation 

   

 

1

1 1       

px

p

p

x
G x e p
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 



  
     
     

          (7.1) 

 

 By numerically solving the equation (7.1), the percentage points px  are computed for 

some selected values of the parameters. These are provided in the Tables 7.1 to 7.3. 
 

Table 7.1 

Percentage Points for  =1,  =1, 1,2,3,4,5 
 

 75% 80% 85% 90% 95% 99% 

β=1 2.69263 2.99431 3.37244 3.88972 4.74386 6.63835 

β=2 5.38527 5.98862 6.74488 7.77944 9.48773 13.2767 

β=3 8.0779 8.98293 10.1173 11.6692 14.2316 19.9151 

β=4 10.7705 11.9772 13.4898 15.5589 18.9755 26.5534 

β=5 13.4632 14.9715 16.8622 19.4486 23.7193 33.1918 
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Table 7.2 

Percentage Points for  =1,  =1, 2,3,4,5   

 75% 80% 85% 90% 95% 99% 

α=2 3.51822 3.82142 4.19891 4.71237 5.55661 7.42728 

α=3 4.00189 4.30397 4.67938 5.18931 6.02712 7.88478 

α=4 4.34389 4.64472 5.01831 5.52552 6.35879 8.20774 

α=5 4.6082 4.9079 5.27997 5.78504 6.61486 8.45739 
 

Table 7.3 

Percentage Points for  =1,  =1, 2,4 
 

 75% 80% 85% 90% 95% 99% 

γ=2 1.64092 1.73041 1.83642 1.97224 2.17804 2.5765 

γ=4 1.28099 1.31545 1.35515 1.40436 1.47582 1.60515 

 

8. CONCLUDING REMARKS 
 

 In this work we have proposed a GEME distribution and developed its various 

properties including certain characterizations of the distribution. An Asymptotic result for 

a specific transformation of the nth order statistic is obtained. Since this distribution has 

many particular distributions such as size biased exponential and EME distribution as 

sub-model, we hope that GEME distribution will be useful in different areas of related 

research in Mathematics, Statistics and Probability as well as related fields. 
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APPENDIX A 

 

Table A1 

Medians for 1,2,3,4,5  , 1,2,3,4,5  , 1   

 
  

1 2 3 4 5 

  

1 1.6784 2.4730 2.9529 3.2959 3.5623 

2 3.3567 4.9459 5.9057 6.5917 7.1246 

3 5.0350 7.4189 8.8586 9.8876 10.6869 

4 6.7134 9.8918 11.8115 13.1834 14.2492 

5 8.3917 12.3648 14.7643 16.4792 17.8114 

 

Table A2 

Medians for 1,2,3,4,5  , 1,2,3,4,5  , 2 
 

 
  

1 2 3 4 5 

  

1 1.29551 1.57256 1.71839 1.81545 1.8874 

2 1.8321 2.2239 2.4302 2.5674 2.6692 

3 2.24389 2.7238 2.9763 3.1445 3.2691 

4 2.5910 3.1451 3.4368 3.6309 3.7748 

5 2.8969 3.5164 3.8424 4.0595 4.22036 

 

Table A3 

Medians for 1,2,3,4,5  , 1,2,3,4,5  , 4 
 

 
  

1 2 3 4 5 

  
1 1.1382 1.2540 1.3109 1.3474 1.3738 

2 1.3536 1.4913 1.5589 1.6023 1.6338 

3 1.4980 1.6504 1.7252 1.7733 1.8081 
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