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ABSTRACT 
 

 Marshall and Olkin (1997) proposed a new method to establish more flexible family 

of distributions by adding a parameter to baseline distribution. In this article, Marshall-

Olkin moment exponential (MOME) distribution is introduced. Various structural 

properties of MOME distribution including survival function, hazard rate function, 

ordinary moments, moments about mean, conditional moments, Renyi’s entropy, 

generalized entropy and median expressions are derived. Maximum likelihood (ML) 

method is applied to obtain parameter estimates of the MOME distribution and a 

simulation study is conducted to check the convergence of ML estimators of the 

parameters of MOME distribution. Application to a real data set is carried out to illustrate 

the flexibility of the model. 
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1. INTRODUCTION 
 

 Marshall and Olkin (1997) introduced a new family of distributions by adding a 

parameter to obtain new families of distributions which are more flexible and represent a 

wide range of behavior than the original distributions. Moment exponential distribution 

plays major role in the analyses of lifetime and survival data. Many researchers used the 

Marshall-Olkin method to propose new distributions and studied their properties and 

parameter estimation. Ghitany et al. (2005) showed Marshall-Olkin extended Weibull 

which can be obtained as a compound distribution from exponential distribution. Since 

2005, the Marshall-Olkin extended distributions have been widely studied in statistics 

and numerous authors have developed various classes of these distributions such as 

Marshall-Olkin extended Pareto (Ghitany, 2005), Marshall-Olkin extended gamma 

(Ristic et al., 2007), Marshall-Olkin extended Lomax using censored data (Ghitany et al., 

2007) and Marshall- Olkin extend uniform distribution (Jose & Krishna, 2011). 

Moreover, the reliability properties of the extended linear failure-rate distributions were 
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studied by Ghitany and Kotz (2007). Jayakumar and Mathew (2008) proposed a method 

based on adding two parameters in to a family distribution and considered as 

generalization to the method suggested by Marshall and Olkin (1997). Gupta et al. 

(2010a) estimated the reliability from Marshall-Olkin extended Lomax distribution. 

Gupta et al. (2010b) studied the effect of the tilt parameter on the monotonicity of the 

failure rate and estimated the turning points of the failure rate of the extended Weibull 

distribution. Gui (2013) introduced Marshall-Olkin power lognormal distribution and 

studied its statistical properties of the new distribution. Cordeiro and Lemonte (2013) 

studied some mathematical properties of Marshall-Olkin extended Weibull distribution. 

Also, they determined the moments of the order statistics and discussed the estimation of 

the parameters using maximum likelihood method. The moment exponential (ME)  

(or length biased) distribution was proposed by Dara (2012) and discussed hazard and 

reversed hazard rate functions of ME distribution. They used the probability density 

function (pdf) of ME distribution as:  
 

  

2( ; ) , , 0.xg x xe x                  (1) 
 

 The aim of this paper is to define and study a new lifetime model called Marshall-

Olkin moment exponential distribution. Its main feature is that one additional parameter 

is inserted in equation (1) through Marshall-Olkin’s method to provide more flexibility 

for the generated model. 
 

 This article will be organized as follows: In section 2, we define Marshall-Olkin 

moment exponential distribution and provide some plots for its pdf and hazard rate 

function (hrf). Some of its structural properties are also derived in section 2. In section 3, 

the maximum likelihood (ML) estimates of the unknown model parameters are provided. 

Application to a real data set is performed in section 4. Finally, in section 5, we provide 

some concluding remarks. 

 

2. THE MOME MODEL AND SOME OF ITS STRUCTURAL PROPERTIES 
 

 In this section we define a MOME distribution. Here, we also find its pdf, cdf, 

survival function, hazard rate function, moments about origin and about mean, 

conditional moments, Renyi’s entropy, generalized entropy and median expressions. A 

simulation study is conducted to check the convergence of ML estimators of the 

parameters of MOME distributions.  

 

i) Marshal Olkin’s ME Probability density function 

 Marshal Olkin’s (1997) defined probability density function of random variable X as 
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From (1) and (2) we can obtain the Marshal Olkin’s ME distribution. The pdf of 

MOME distribution is 

 

 



Zafar Iqbal et al. 15 

  

 
2 2

1
, , , 0

1 1

x

x

xe
g x x

x
e








   
  

    
  
           

(3) 

 

where   0 for 0g x x   
0

 1g x dx


 , (3) is MOME model with base line 

distribution is an ME distribution (1). 

 

Pdf’s Graph of MOME distribution 
 

 By fixing and changing   (and vice versa) different shapes are as under 

 

 
 

  
 

Fig. 1: The pdf of MOME distribution by fixing   and changing   (and vice versa) 
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ii) Cumulative distribution function of MOME distribution 
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 after some simplifications 
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  where    0 0,   1G G  

 

 

iii) Survival function of MOME distribution 

The function ( ) 1 ( ) ( )S x G x P X x    is called survival function or reliability 

function.  
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 is survival function of MOME distribution. 

 

iv) Hazard rate function 

 The hazard rate function is defined as 
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 Graph of hazard rate function of MOME for various values of   and   are 
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v) Reverse hazard rate function 

 Reverse hazard rate function is defined as 
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(7) 

 

vi) Mills ratio 

 Mills (1926) introduced the a ratio called Mills ratio defined by the equation as  
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 For the proposed MOME distribution Mills ratio is 
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vii) Mean residual function 

Mean residual life function (MRLF) e(x), for a random variable X with E(X) < ∞, is 

given as  ( )e x E X x X x   . It computes the average lifetime remaining for an 

item, which has already survived up to time x. it is given as 
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viii) Vitality function 

The vitality function v(x), of a random variable X with an absolutely continuous 

distribution function F(x) is given as 
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ix) Moments of MOME distribution 

 Moments about zero (Raw moments) for MOME are 
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 The proof is simply by comparing both methods. 
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Table 1 

Values of the Moments about Origin for Different Values of α and β 

 ,  '
1  '

2  '
3  '

4  

0.5,1 1.52 3.82 13.72 129.1 

0.5 ,2 3.05 15.27 109.74 1032.62 

0.5,3 4.6 34.4 370.4 5227.65 

0.9,1 1.92 5.62 22.1 109.4 

0.9,2 3.844 22.46 176.75 1750.32 

0.9,3 5.8 50.54 596.54 8861 

1.9,1 2.5 8.14 38.98 207.65 

1.9,2 5.03 35.26 311.87 3322.4 

1.9,3 7.55 79.33 1052.36 16819.6 

 
Values of the each moment about origin increases for increasing values of α and β. 
Moments about mean (central moments) 
The rth moment about mean 
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Table 2 

Values of the Moments about Mean for Different Values of α and β 

 ,  2  3  4  

0.5,1 1.51 3.32 82.62 

0.5,2 5.96 26.76 286.48 

0.9,1 1.94 3.99 23.23 

0.9,2 7.72 30.98 351.12 

1.9,1 29.01 9.18 5.912 

1.9,2 54.03 34.3 479.8 
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Table 3 

Moment Ratios for Various Values of α and β 

 ,  1    2  

0.5,1 1.78 36.2 

0.5,2 1.84 8.1 

0.9,1 1.47 6.2 

0.9,2 1.43 5.89 

1.9,1 0.06 2.96 

1.9,2 0.086 0.16 

 

For 0.9 and =2    the MOME distribution is approximately symmetric and 

normal. 

 

x) Conditional moments 

 The rth conditional moments is defined as  
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xi) Inverse moments  

 The inverse moments are calculated as  
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xii) Median  

Median of MOME distribution can be obtained by solving ( ) 0.5G m  , where G(m) 

is the cdf of MOME distribution. 
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Table 4 

Values of the Median for Different Values of α and β 

  
  

0.5 1 2 3 4 9 

0.5 0.59 0.84 1.145 1.35 1.49 1.945 

1 1.19 1.68 2.29 2.7 2.99 3.88 

2 2.378 3.36 4.58 5.4 5.98 7.78 

3 3.5 5.04 6.87 8.1 8.98 11.67 

5 5.94 8.4 11.45 13.5 14.97 19.45 

 

Values of the median increase for increasing α and β. 

  

xiv) Entropy 

Simply entropy means randomness. The idea of entropy in information theory was 

developed by Shannon (1948). It is a quantitative measure of uncertainty of 

information related to a random phenomenon. Like measure of dispersion, low 

entropy in a distribution indicates more concentration and more information as 

compared to high entropy. Entropy is very useful in reliability and survival analysis 

problems. 
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xv)  Information Function (IF) 
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xvi) Re'nyi Entropy 

Entropy has been used in various situations in science and engineering. The entropy 

of a random variable X is a measure of variation of the uncertainty. If X is a random 

variable which distributed as MOME distribution, then the Re'nyi entropy, for 0, 

and 1,   is defined as 
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xvii) Generalized Entropy  

 Generalized entropy is defined as  
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 and for MOME distribution  
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xix) Estimation of parameters 

Suppose 1 2, , ..., nX X X is a random sample of size n drawn from equation (4.2) of 

MOME distribution  
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 Its log-likelihood function is 
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The maximum likelihood estimators of unknown parameter  and β is that value of 

parameter which maximize the likelihood function, that can be obtained by solving 

the equations  
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(24) and (25) are not in closed form therefore for parameter estimation by maximum 

likelihood method we shall solve them numerically. 

 

xx) Pdf of order statistics 

 The pdf of ith order statistics ,   Xi n  say  ,gi n x  can be expressed by using equations 
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3. APPLICATION OF MOME DISTRIBUTION 
 

 To illustrate the performance of purposed MOME distribution we consider the data 

set obtained (see Aarset (1987)). It is a strength data measured in GPA, the single carbon 

fibers, and impregnated 1000-carbon fiber tows. Single fibers were tested under tension 

at gauge length 1 mm. The data are provided below: 
 

2.247, 2.64, 2.908, 3.099, 3.126, 3.245, 3.328, 3.355, 3.383, 3.572, 3.581, 

3.681, 3.726, 3.727, 3.728, 3.783, 3.785, 3.786, 3.896, 3.912, 3.964, 4.05, 

4.063, 4.082, 4.111, 4.118, 4.141, 4.246, 4.251, 4.262, 4.326, 4.402, 4.457, 

4.466, 4.519, 4.542, 4.555, 4.614, 4.632, 4.634, 4.636, 4.678, 4.698, 4.738, 

4.832, 4.924, 5.043, 5.099, 5.134, 5.359, 5.473, 5.571, 5.684, 5.721, 5.998, 6.06 
 

 Before progressing further first we provide the histogram of the strength data in 

Figure below.  

 

 

Fig 4.13: Histogram of Sample Data 

 

Fig 4.13: cdf of Sample Data 

 

 Note: From the above graph it is immediate that the data are unimodal.  
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Figure 4.14: cdf Graphs of Weibull, Gamma, Extended  

Weibull and MOME Distributions 

 

 It is the comparison of cdfs of four mentioned distributions. It represents that graphs 

of all cdfs’ have approximately same pattern. 

 

Table 5 

ML Estimates and Goodness of Fit Statistics for Strength Data 

Parameters 
Weibull 

(λ,k) 

Gamma 

(k,λ) 

EW 

( a,b,c) 

TEW 

(λ,β,k,α) 

EXTW 

(a,b,c) 

MOME 

(α,β) 

Estimates 

6019.81 26.283                  266.91145 2201.81 

5.7057 0.1620                 0.00001 0.42073 

- -                25.25964 - 

- - -           - 

- -
 

- -  - 

Log-

likelihood 
                                                     

AIC 141.867 140.758          142.33 141.9 138.912 

BIC 145.918 144.809        148.409 147.976 142.963 

Rank 5 3 5 4 2 1 

EW: exponentiated Weibull distribution; EXTW: extended Weibull distribution;  

TEW: transmuted exponentiated Weibull. 

 

 From above table 5 we compare MOME model with Weibull, Gamma, EW, TEW and 

EXTW, we note that log-likelihood of MOME distribution is more than all distribution 

and its AIC and BIC both are less than AIC and BIC of other competitive distributions. 

So, we prove empirically that MOME distribution can be better model than all 

competitive models.  
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4. SIMULATION RESULTS 
 

 We simulate 10,000 samples of size n (30, 50, 100, 500) from MOME distribution 

with the specified values of parameters taking α=0.5, β=0.5 in table 5 and α=2, β=2. 

Equations (24) and (25) are the expressions for estimating the MLEs of the model 

parameters, which we use here for estimation of the distribution’s parameters from the 

sample. A simulation is done by R Language. The following tables provide the 

information on estimated values, Bias and MSE. 

 

Table 6 

Simulation Results 

Parameter 
True 

value 

Sample  

size 

Estimated  

value 
Bias Variance MSE 

Α 0.5 

30 0.659892 0.1599 0.115816 0.141384 

50 0.613129 0.113129 0.062266 0.07506 

100 0.565157 0.065157 0.020461 0.024706 

500           0.03903 0.018358 0.01988 

Β 2 

30 1.82815 0.17185 0.136606 0.166138 

50 2.08146 0.08146 0.12442 0.13106 

100 1.93215 0.06785 0.074591 0.07919 

500 1.9502 0.0498 0.033089 0.03557 

 

Table 7 

Simulation Results 

Parameter 
True 

value 

Sample  

size 

Estimated  

Value 
Bias Variance MSE 

α 2 

30 1.84933 0.15067 0.579232 0.601933 

50 2.1357 0.1357 0.390657 0.40907 

100 2.05013 0.05013 0.336087 0.3386 

500 1.97363 0.02637 0.151871 0.152565 

β 2 

30 2.24336 0.24336 0.166985 0.22621 

50 1.88498 0.11502 0.065256 0.07848 

100 2.10112 0.1011 0.058283 0.06850 

500 2.00286 0.00286 0.018693 0.01870 

 

5. CONCLUDING REMARKS 
 

 Adding parameters to a well-established distribution is used for obtaining more 

flexible new families of distributions. Marshall and Olkin (1997) used larger class of 

distribution functions by inserting an additional parameter in order to obtain a distribution 

function which contains the original one as the special case. In this paper, Marshall-Olkin 

moment exponential (MOME) distribution is introduced and properties of MOME 

distribution including survival function, hazard rate function, moments about origin, 

moments about mean, conditional moments, Renyi’s entropy, generalized entropy and 

median expressions are derived. It is proved, empirically that, MOME distribution can be 

better model than all competitive models. A simulation study for the MOME model 
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parameters are also included by taking different sample size. Bias and MSE of estimates 

of the parameters of MOME model are going to decrease for increasing n. 
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