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Machine learning algorithms are rapidly deploying and have made manifold breakthroughs in various fields. )e optimization
of algorithms got abundant attention of researchers being a core component for deploying the machine learning model (MLM)
abled to learn the parameters in significant ways for the given data. Modeling crop productivity through innumerable
agronomical constraints has become a crucial task for evolving sustainable agricultural policies. )e cross-sectional datasets of
26430 (D1) crop-cut experiments are taken by 2nd-stage area frame sampling, collected from crop reporting service. )is
research is taken as follows: firstly three more effective numerical optimized datasets are generated (D1, D2, and D3) from D1
by taking the centroid points of features which decrease the sample size; secondly MLM is integrated with the traditional
statistical models (TSMs) for multiple linear regression (MLR), and thirdly decision tree regression (DTR) and random forest
regression (RFR) are deployed to get the optimized models able to predict the wheat productivity well with 75% datasets to train
and 25% to test the model using the evaluation metrics (R2, RMSE), information criterion (AIC) with weights (AICW), evidence
ration (E.R), and decompositions of prediction error. )e MLR outperformed for MLM than TSM.)e performance capability
of MLM and TSM got upswing for generated datasets. RFR got optimized and superperformed for D1, D2, D3, and D4. )is
study demonstrated strong evidences for deploying MLM for prediction of wheat productivity as an alternative of traditional
statistical modeling.

1. Introduction

1.1. Significances, Motivations, and Objectives of the Study.
Producing enough food for evolving population explosion
has become the major concerns for the global world. Ag-
riculture in aspect of core contributor in food production is
ensuring to meet the sustainable food availability [1]. Food
security has been considered as the foremost global threat,
and therefore, it is essential to steer strategies to determine
policies for future food security and sustainable food
availability [2, 3]. Food and agricultural organization, in-
ternational food policy research institute, and many other
international organizations deem their great concerns on
this converted threat to attain sustainable food availability
[4–6]. Modeling crop productivity through innumerable

agronomical constraints has become a crucial task to attain
sustainable agriculture and for evolving effective agricultural
strategies [7]. A precise crop model based on certain con-
ditions is a foremost need of time to evoke to handle the
prevailing food trepidations [8, 9]. Wheat being a 3rd largest
food crop is playing a vital role for assuring the food supply
in the world [4, 10–12]. Developing food prediction models,
capable for true estimation of food availability, can assure
veracious policy decision for managing national action plans
for food security [13]. Pakistan stood 6th for wheat pro-
duction, 8th for cultivated area under wheat crop, and 59th
for wheat productivity [14]. Its exigent need of era is to
develop accurate and precise wheat productivity model
capable to predict the production on the reliable statistics
which would help us to attain the assurance or nonassurance
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of future food demand [15]. Islam et al. [2] presented the
study on the large datasets for building the statistical pre-
diction model for the wheat productivity in Pakistan using
hierarchical regression approach for selecting the features to
address food security threat for the global concerns based on
cross-sectional record. )is study presented the tradition
statistical modeling and introduced the theory of centroid
clustering used to generate the three more datasets from the
original datasets. Generated datasets enhanced the model
prediction capability with the reduction of sample size. )ey
applied different evaluation metrics, adjusted R2, ΔR2, MSE,
and information criterion approaches such as Akaike in-
formation criteria (AIC), Schwarz information criterion
(SIC), and weighted information criterion (Akaike weight
“Wi”) with evidence ratio “E.R,” etc. )e normality analysis
and constant error variance are done by graphical presen-
tation. )e VIF is applied for multicollinearity, and non-
constant error variance is checked by Breusch–Pagan test
which is developed in 1979 by Trevor Breusch and Adrian
Pagan. )e reliably analysis is performed by Cronbach’s
alpha test.

Machine learning algorithms widely develop and deploy
rapidly and have made manifold breakthroughs in various
fields. )e advancement in science, technologies, and
implementations of innumerable agronomical constraints in
various fields of agriculture leads to immense volume of data
[1, 8, 16]. )e optimization of algorithms has become a
significant part of machine learning and got abundant at-
tention of researchers, and significance proficiency of nu-
merical optimized algorithms of datasets affectedly
influenced the machine learning model performance ca-
pability for the massive amount of data [17]. In this research,
firstly the effective numerical optimized datasets are de-
veloped by taking the centroid points of features abled to
enhance the machine learning model performance by de-
creasing the sample size, secondly machine learning models
are integrated with the traditional statistical models, and
thirdly different machine learning models are deployed to
get the optimized models able to predict the wheat pro-
ductivity well. )is study designed to apply the supervise
machine learning techniques, i.e., multiple linear regression
model (MLRM), decision tree regression model (DTRM),
and ensemble learning random forest regression model
(RFRM) on the same datasets with the aim to enhance the
model performance by reducing the sample size through
centroid clustering. )is study integrates the efficacies of
machine learning algorithms with benchmark traditional
statistical models for wheat productivity.

2. Material and Methods

2.1. Data Collection, Sampling Method, and Important Fea-
tures Selection. Punjab is the 2nd largest province of
Pakistan which accounted 76% share in total wheat culti-
vation area. )e administrative setup of Punjab comprises
upon nine divisions, thirty-six districts, and one hundred
and forty-five tehsils. )e 26,430 field of wheat crop-cut
experiments (C.C.E) is taken from crop reporting service
(CRS), Punjab, for the year comprised from 2016-17 to 2019-

2020. )e list frame sampling (LFS) technique using sys-
tematic random sampling (SyRS) in which complete village
(sample unit) was selected as basic unit was remained in
practice in CRS, but after 2018-19, 2nd-stage area frame
sampling (AFS) is applied to select the sample for C.C.E [18].

AFS Pi( 􏼁 �
Zi

􏽐
N
i�1 Zi

, (1)

where Zi � cropped area of ith village in jth union councils of
district, 􏽐

N
i�1 Zi � total crop area of village in jth union

councils of district, and Pi � probability of selecting the ith
village as sample. Qayyum and Shera [18] reported, at stage I,
union councils are considered as population and village as
sampling units using probability proportion to size (PPS),
while at stage II, the selected sample village is considered as
population and the land segment area is considered as
sampling unit using the simple random sampling (SRS)
techniques. )e C.C.E is selected in land area segments. )e
wheat productivity with measuring scale munds/acre along
with seven agronomical quantitative variables, i.e., fertilizer
urea kg/acre, fertilizer DAP kg/acre, other fertilizers kg/acre,
no. of water, seed quantity used kg/acre, no. of pest spry, no.
of weeds spry, and eight binary categorical (0 for absence and
1 for presence) agronomical features, i.e., seed treatment,
soil-type chikny loom, varieties adoption, harvest period
April (1-20), planting in November, land irrigated, farmers’
area >25 acres, and seed type, is used in the current study.
Experiment is performed using Python’s key library called
scikit-learn (Sklearn) by Jupyter Notebook as https://scikit-
learn.org/stable/supervised_learning.html. Sklearn offers
various prominent features for data processing, classifica-
tion, clustering evaluation, and model selection. Mod-
el_selection is Sklearn method used for setting to analyze
datasets and then using it on unseen datasets for evaluation
purpose.

2.2. Supervised Machine Learning Technique. Machine
learning is viewed as innovative extension of statistics ca-
pable of dealing with the massive datasets by adding the
methods from computer science to the repertoire of statistics
[19]. Machine learning is categorized as advanced tools
applied for the prediction of agricultural production
[20–23]. According to Jeong et al. [9], machine learning used
latest process-based techniques as an alternative to tradi-
tional statistical modeling. Machine learning is viewed as
assumption-free methods for correct data structure of
model, and it is applied in complex projection concerns, i.e.,
function form for crop yield prediction [8, 24]. Arthur
Samuel (1901–1990), a pioneer in artificial intelligence (AI),
coined the term machine learning in 1959 as “Field of study
that gives computers the capability to learn without being
explicitly programmed” [25, 26]. )e prominent layout of
machine learning process is narrated as follows:

(i) Data gathering
(ii) Data preparations
(iii) Selection of machine learning model
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(iv) Data partitions into train and test split datasets
(v) Model evaluations for train model and for test

model
(vi) Hyperparametric tuning of machine learning

models
(vii) Deployment of ML model or prediction

2.2.1. Multiple Linear Regression Models (MLRMs). MLR is
used to endeavor the relationship of feature with wheat
productivity for prediction for both statistical and machine
learning modeling as Yi � Xiβi + ε, where Yi �wheat pro-
ductivity munds/acre, Xj � features, and βj � features
coefficients.

2.2.2. Decision Tree Regression Model (DTRM). )e decision
tree regression model (DTRM) used the flowchart structure
to predict the response. DTR-built internal node signifies a
test, branches signify the outcome for test, and each leaf
node signifies the final decision [27, 28]. In contemporary
speech, leaf nodes reproduce the outcomes of prediction
after getting hierarchal representation of leaf and branch
structure for root-to-leaf direction. DTRM with depths
ranging from 1 to 20 is plotted for training and test per-
formance to determine the optimum DTRM capable to
predict the wheat productivity well. )e cross-sectional
hyperparametric tuning is exercised using the Grid-
SearchCV. )e GridSearchCV is scikit-learn library applied
to find out the optimum number for min_sample_split and
max_depth (tree depth). Figure 1 shows the structural flow
for the decision tree model.

2.2.3. Random Forest Regression Model (RFRM). )e RFRM
almost consists of the same set of hyperparameter tuning as
DTRM except random forest (RF). RF used the additional
randomness for the predicted made while growing the re-
gression trees instead of pointing the important features to
split the node. RFRM searches the best set of features and
averaged multiple regression decision trees to avoid over-
fitting problem, and parameter no. of trees (n_sample) in the
forest has been used which ranged from 10–100 [29, 30].
RFRM used precision to build up the forest random and
search the best feature [31]. RFRM uses bootstrap aggre-
gating for agricultural decision related to crop productivity
prediction [21, 30, 31]. Figure 2 depicts the structural flow
for RFR.

2.3. Preparation of Datasets. Data preprocessing is a tech-
nique used as a branch of data miming applied to search out
accurate dataset from large dataset-based identifying, clas-
sification, clustering, and regression [32–34]. )ree new
datasets are generated from original 26,430 C.C.E by data
preprocessing using centroid point clustering to increase the
prediction interpretability and capability of models by re-
ducing the sample size based at villages, tehsils, and district-
level datasets [2].

xicm
�

􏽐
Njnm

j�1 xicm

Njnm

,

qicm
�

􏽐
Njnm

j�1 qicm

Njnm

.

(2)

For 1st subsets, i� 1, 2, . . ., 7 (quantitative variables),
j� 1, 2, . . ., Njnm

( jth observation of ith predictors in mth

cluster (m� 1, 2, 3)), Njnm
� total no. of jth observation of ith

predictor in mth cluster, and xicm
� average of the ith quan-

titative variable inmth cluster. For 2nd subsets, i� 1, 2, . . ., 8
(categorical binary variables), j� 1, 2, . . ., Njnm

( jth obser-
vation of the presence of ith binary variable in mth cluster
(m� 1, 2, 3)), Njnm

� total no. of jth observation of ith binary
variable inmth cluster, and qicm

� proportion of the ith binary
predictor in mth cluster. )e original datasets (D1) comprise
26,430 rows/records/samples points of features, and the
following three datasets are generated.

(i) Cluster-1 (D2) comprises 6034 rows/records/sample
points taken by village centroid point of features

(ii) Cluster-2 (D3) comprises 145 rows/records/sample
points taken by tehsils centroid point of features

(iii) Cluster-3 (D4) comprises 36 rows/records/sample
points taken by district centroid point of features

2.4. Data Partition. Sklearn provides a way to generate
accurate results abled to make true prediction, and for that, it
is needed to train your model using train datasets and then
test on unseen datasets using Sklearn train_test_split
function. )e train_test_split function is used for splitting a
single dataset into two different subsets using random
partitions called training subsets and testing subsets. )e
training subset is used to learn or to build model, and testing
subset is used to evaluate the model performance for unseen
datasets. For the current study, data partition is carried out
using randomization train-test split and capability perfor-
mance of models is investigated based on four types of
datasets taking the 75% data as training subsets and 25%
dataset for testing/validation subsets as follows.

(i) D1 consists of 19822 sample points as training
subsets and 6608 subsets as testing subsets

Splitting

Splitting Splitting

Splitting

Internal nodesInternal nodes

Leaf nodes

Internal nodes Internal nodes

Leaf nodes

Leaf nodes Leaf nodes Leaf nodes Leaf nodes

Root nodes

Figure 1: Structural flow of decision tree regression.
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(ii) Cluster-1(D2) uses 4525 sample points as training
and 1509 for testing subsets

(iii) Cluster-2 (D3) uses 108 sample points as training
and 37 for testing subsets

(iv) Cluster-3(D4) uses 27 sample points as training
subsets and 09 for testing subsets

2.5. Hyperparametric Tuning of Machine Learning Models.
While applying the machine learning algorithms to predict
the response variable (wheat productivity), the datasets split
into two parts named training and testing datasets (Section
2.4). Two types of error are reported in prediction of re-
sponse using machine algorithms [35], the error reported
during training phase is called training error or bias, and this
error is measured from overall observed data samples in the
training phase, while the out-of-sample error (generalization
error) measures the expected error on testing phase or in
unseen datasets called variance. Both the underfit (high bias
and high variance) and overfit (low bias and high variance)
algorithms mislead the machine learning model prediction
capability, and the bias-variance trade-off is common
property in application of machine learning model building.
)e decomposition of prediction error is comprised as the
sum of three components, bias, variance, and irreducible
error [25, 36]. )e mathematical illustration of bias and
variance is presented as the target variable (wheat yield) is
going to be predicted by machine learning model taking the
covariates (15 features) by the relation as y� g(x)+ e where
“e” is supposed to be the error term fallow normality. Using
machine learning modeling technique, the estimated model
of g(x) is 􏽢g(x) and the expected squared prediction error at
“x” is found as follows:

P.E(x) � E y − g(x)
2

􏽨 􏽩. (3)

Prediction error is decomposed into categories as bias
and variance components as follows:

E[y − 􏽢g(x)]
2

� [E 􏽢g(x)􏼈 􏼉 − g(x)]
2

+ E 􏽢g(x) − E[􏽢g(x)]􏼈 􏼉
2

􏽨 􏽩 + σe,

P.E(x) � Var[􏽢g(x)] +[Bias 􏽢g(x)􏼈 􏼉]
2

+ Var(e),

prediction error � variance + bias2

+ irreducible error term.

(4)

)at irreducible error term may be known as noise term
which exists in the true relationship between the feature and
response in model prediction and in machine learning
model; the aim is to decrease both the bias and variance
terms. However, in machine learning model prediction,
there exists a bias-variance trade-off and the optimummodel
complexity means a situation where the model predicted
well with low variance and low bias and is free from overfit
and underfit model [37]. Figure 3 elaborates the condition of
overfitting and underfitting at lower and higher model
complexity, while at ideal range of model complexity, the
MLM predicted well.

2.6. Evaluation Metrics and Information Criterion. )e
evaluation metrics using the performance score (R2) and
root mean square error (RMSE) are applied to measure the
accuracies of regression models. Lower the value of RMSE
and higher the performance score lead to support the good
fit.

RMSE �

�����������

􏽐
n
i yi − yi( 􏼁

2

n

􏽳

,

R
2

�
􏽐(􏽢Y − Y)

2

􏽐(Y − Y)
2.

(5)

RANDOM FOREST

DATASET
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AVERAGE ALL PREDICTIONS FINALPREDICTIONS MADE

Figure 2: Structural flow of random forest regression.
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2.6.1. Akaike Information Criterion, AIC Weights, Evidence
Ratio, and Reliability Analysis. )e Akaike information
criterion (AIC) using the log-likelihood functions with
simple penalties is applied to determine the theoretical and
logical relevance of the predictors to the response and their
statistical significance inmodel. Lower the value of AIC leads
to conclude that the fitted regression model is good [38–40].

AIC � e
2k/n􏽐 􏽢u

2
i

n

� e
2k/nRSS

n
,

(6)

where k� no. of features and intercept, n� sample size, and
2k/n� penalty factor.

One of the key objectives of driving the AIC is to
determine the range of models with their relative AIC
value. For comparing the multiple models, we can measure
how much better the best candidate model is to be com-
pared with next best models, and the easiest way to de-
termine the comparison is to measure the change in of AIC
values for the best model with the ith other models
ΔAICi �AICi − AICmin. ΔAICi is also used to measure the
relative strengths of best models with other models. ΔAICi
is used to determine the level of empirical support of model
comparisons for quick strength of evidence, and lower the
difference leads to support the model. Burnham and
Anderson [41] defined the evidence ratio “E.R” used to
compare the efficiencies of various models and depicted the
measure of how much more likely the best model is than
other models [42].

ER �
exp − (1/2)Δbest( 􏼁

exp − (1/2)Δi( 􏼁
�
Weightbest(AIC)

Wj(AIC)
. (7)

Akaike weight is used to determine the probability of
model having good prediction capability or not to predict
the wheat productivity and summing to unity
[􏽐 Wi(AIC) � 1]. )e higher weights lead to model having
relatively good prediction capability and vice versa [38, 43].
Cronbach’s alpha “α” and reliability analysis are applied to
determine the degree of consistency and relevance of pre-
dictors with reference to the measure of response [44, 45].

Wi(AIC) �
exp − (1/2)Δi(AIC)􏼈 􏼉

􏽐
n
k�1 exp − (1/2)Δi(AIC)􏼈 􏼉

,

Corn bach’s α ��
k

k − 1
1 −

􏽐 s
2
i

s
2
T

􏼠 􏼡,

(8)

where k� no. of items, s2i � variance of ith item, and
s2T � aggregate item variance.

Reliability coefficient ranging from 0 to 1 and its values
near to 0 indicate poor reliability while near to 1 depict
strong reliability. )e prediction capabilities of models are
integrated by using the four different sample size datasets
generated through centroid clustering scheme. )is study
integrates the efficacies of machine learning models with
benchmark traditional statistical models to select the most
optimum model that follows the evaluation metrics and
information criteria.

3. Data Analysis

3.1. Importance of Agronomical Features and Reliability of
Datasets. Feature importance refers to techniques that as-
cribe importance score to input variables which are useful to
investigate that how useful the features are to predict the
response. Feature importance scores provide the view in-
sight datasets as well as inside the model and improved the
efficiency, predictability, and effectiveness of a predictive
machine learning model. Before deployment of machine
approaches to different datasets, the variations of agro-
nomical features prevailed in simultaneous order for the
importance of usefulness in the current study are particu-
larized in Figure 4 for D1, Figure 5 for D2, Figure 6 for D3,
and Figure 7 for D4. Table 1 shows the values of Cronbach’s
alpha for the reliability measure and reports the reliability
coefficients as 0.35 for D1, 0.39 for D2, 0.63 for D3, and 0.64
for D4. )e reliability of datasets has become strong and
strongest as we advanced from D1 to D4.

3.2. Performance Measures of Multiple Linear Regression
Models. )e performance for the prediction capability of
multiple linear regression for the generated different size
datasets is evaluated and integrated for both the traditional
statistical models and machine learning approaches.

3.3. Machine Learning Models. Multiple linear regression
models (MLRMs) are constructed using the machine
learning approach and integrated with benchmark tradi-
tional statistical models. For MLM, Table 2 shows the
performance score 0.266, 0.289, 0.838, and 0.932 for the
training datasets and 0.264, 0.285, 0.834, and 0.655 for
testing/validated datasets, respectively, for D1, D2, D3, and
D4. )e R2 has become strong and strongest as we advance
from D1 to D4 for train datasets (R2

Dtrain(i) <R2
Dtrain(i+1)) and

de novo the same for test data except for D4. )e RMSE
found 9.14 and 9.21 for D1, 7.65 and 8.09 for D2, 3.15 and
3.34 for D3, 1.95 and 3.31 for D4, respectively, for train and
test models.)e RMSE decreases as we advanced fromD1 to

Predictive
Error

Model Complexity

Underfitting Overfitting 

Error on Test Data

Error on TrainingData

Ideal Range 
for Model Compexity

Figure 3: Structure of MLM complexity for over- and underfitting.
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D4 (RMSED(i) >RMSED(i+1)) for both train and test datasets.
)e model is train and deployed for the training datasets
using 75% train subsets. )e D4 shows lowest AIC as 1.62
with highest Akaike weights (AICW) as 0.45 followed by AIC
as 2.43 and AICW as 0.30 for D3, AIC as 4.07 and AICW as
0.13 for D2, and AIC as 4.43 and AICW as 0.11 for D1. )e
Akaike weights are increasing (AICw(i) <AICw(i+1)), and
AIC is decreasing (AIC(i) >AIC(i+1)) as we advance from D1

to D4. )e evidence ratio justifies the results as D4 model is
4.06, 3.41, and 1.50 more likely to D1, D2, and D3 models,
respectively.

3.3.1. Integrating Machine Learning and Traditions Statistics
Modeling for MLR. Table 2 shows the comparisons of
model performance for MLM with benchmarks TSM. For
TSM, the performance score is found as 0.265, 0.287,
0.823, and 0.862 and RMSE as 9.17, 7.77, 3.35, and 2.66,
respectively, for D1, D2, D3, and D4. It is evident that the
highest values of performance score and lowest value of
RMSE are found for MLM comparing with benchmark
TSM as we advanced from D1 to D4 (R2

TSM <R2
MLM,

RMSETSM > RMSEMLM). )e lowest value of AIC is ob-
tained from MLM comparing with TSM for all the
datasets as AICTSM >AICMLM. )e AIC weight reported
0.45 for MLM, while it is 0.38 for TSM for D4 which
elaborated as MLM has high probability for selecting the
best model. )e evidence ratio for TSM based on D4 is
2.96, 2.51, and 1.14 more likely to D1, D2, and D3 and
integrated that E.R is found better in MLM comparing
with TSM for all datasets (E.RTSM < E.RMLM). All the
performance measure optimized well in ML models
clarified that MLM has good prediction capability for
prediction of the wheat productivity based on agro-
nomical features. Figure 8 clarifies that the graphical
relations exist for learning points of the models for
evaluation metrics and information criterion for both
MLM and TSM and shows that machine learning per-
formed well for all the datasets and D4 optimized the
machine learning multiple regression models.

3.4. Decision Tree and Random Forest Regression Models.
)e machine learning models are trained and deployed
for multiple linear regression models, and predicted well
is further trained and deployed for the important and
most prominent machine algorithms, i.e., decision tree
regression models (DTRMs) and random forest regres-
sion models (RFRMs) with the aim to get the most op-
timized models able to predict the wheat productive well
using 75% data to learn the model and 25% as validated
datasets to evaluate the model capability on unseen
datasets.

3.4.1. Hyperparametric Tuning of DTRM and RFRM.
Hackeling [46] reported hyperparametric tuning of DTRM
models applied to avoid over and underfitting using the
scikit-learn’s library GridSearchCV to find out the optimum
value of min_sample_split and max_depth (tree depth).
Figure 9 shows DTR for D1 having 19822 samples point for
training and 6608 sample points for testing phase and
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Figure 7: Feature importance for D4.

Table 1: Cronbach’s alpha reliability coefficients for various
datasets.
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Figure 4: Feature importance for D1.
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Figure 5: Feature importance for D2.
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illustrates that at lower model complexity the model is
underfit (high bias and high variance) and the error curve for
testing set raises again after tree depth 10 which leads to
overfit the model, while for Figure 10, DTR for D2 has 4525
sample points for training and 1509 sample points for testing
phase, and the same prevails after tree depth 06, indicating
that optimum hyperparameter for tree depth is found 10 and
06 for DTR model based on D1 and D2. )e tree depth
values got optimized at 05 and 04 for models based on D3
having 108 sample points for training and 37 sample points
for testing phase and D4 having 27 sample points for
training and 09 sample points for testing phase (Figures 11
and 12). )e min_sample_split value found optimized at 29,
28, 6, and 2, respectively, for D1, D2, D3, and D4. )e RFR
and DTR consist of the same set hyperparameters except
random forest called no. of trees in the forest (n_sample) and
its default value ranged from 10-100. )e D1 optimized at

no. of tree 10, D2 and D3 at no. of tree 50, and D4 optimized
at no. of tree 100 for the prediction model for wheat
productivity.

3.4.2. Decision Tree Regression Models. For the DTRM,
Table 3 shows the performance score and RMSE as 0.364,
0.366, 0.940, and 0.987 and 8.51, 7.22, 1.92, and 0.828 for
train models, while for test model the performance scores
are 0.323, 0.331, 0.731, and 0.741 and RMSEs are 8.82, 7.82,
4.26, and 2.87. R2 is increasing, and RMSE is decreasing
(R2

D(i) <R2
D(i+1), RMSED(i)>RMSED(i+1)) for train and test

models as we advanced from D1 to D4. )e DTR model is
trained and deployed for the training datasets using 75%
train subsets. )e AIC reported diminishing trend as 4.28,
3.96, 1.44, and 0.29 for D1 to D4 (AIC(i)>AIC(i+1)). )e
AICW of models based on D4 is highest with probability 0.54
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Figure 8: Integrating/comparisons of machine learning and statistical models.
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Figure 9: Hyperparameter tuning of DTR for D1.
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Figure 10: Hyperparameter tuning of DTR for D2.

Table 2: Integrating machine learning and tradition statistics modeling for MLR.

Datasets
Machine learning MLRM Statistical MLRM

P.Score RMSE AIC ΔAICi AICWi E.R P.Score RMSE AIC ΔAICi AICWi E.R
D1 0.266 (0.264) 9.14 (9.21) 4.43 2.80 0.11 4.06 0.265 9.17 4.43 2.17 0.13 2.96
D2 0.289 (0.285) 7.65 (8.09) 4.07 2.45 0.13 3.41 0.287 7.77 4.10 1.84 0.15 2.51
D3 0.838 (0.834) 3.15 (3.34) 2.43 0.81 0.30 1.50 0.823 3.35 2.52 0.26 0.34 1.14
D4 0.932 (0.655) 1.95 (3.31) 1.62 0.45 0.862 2.66 2.26 0.38
Testing dataset values are shown in parenthesis.

Scientifica 7



followed by D3� 0.30, D2� 0.13, and D1� 0.07
(AICw(i)<AICw(i+1)). )e E.R values of DTR models show
that the model learns from D4 is 7.37, 6.27, and 1.78 more
likely to models learns from D1, D2, and D3.

3.4.3. Random Forest Regression Models. For the RFR, Ta-
ble 3 shows the performance score and RMSE as 0.380, 0.388,
0.948, and 0.973 and 8.40, 7.09, 1.78, and 1.23 for train sets,
while the performance score and RMSE is reported as 0.345,
0.362, 0.786, and 0.877 and 8.68, 7.64, 3.79, and 1.97 for test
models. R2 shows the increasing, and RMSE shows the
diminishing relation as we advanced from D1 to D4
(R2

D(i) <R2
D(i+1), RMSED(i)>RMSED(i+1)). )e RFR model is

trained and deployed for the training datasets using 75%
train subsets.)e AIC reported diminishing trend 4.26, 3.92,
2.18, and 0.70 with increasing AICW as 0.09, 0.11, 0.26, and

0.54 for D1, D2, D3, and D4models (AICw(i)<AICw(i+1) and
AIC(i)>AIC(i+1)). )e highest values of AIC weight reported
from model learn from D4 followed by models learn from
D3, D2, and D1.)e E.R values of RFRmodels show that the
models learn from D4 and are 5.92, 5.0, and 2.10 more likely
to models learn from D1, D2, and D3.

3.5. Comparative Quantification ofMachine LearningModels
for Different Datasets. Section 3.3.1 depicts that machine
learning performed well comparing with traditional statis-
tical approaches for multiple regression models. Section 3.3
presents models further trained and deployed for machine
learning algorithms, i.e., decision tree regression models
(DTRMs) and random forest regression models (RFRMs)
with the aim to get the most optimized models able to
predict the wheat productive well.

Table 3: Integrating the DTR and RFR with evaluation metric and information criteria.

Datasets
Machine learning DTR Machine learning RFR

P.Score RMSE AIC ΔAICi AICWi E.R P.Score RMSE AIC ΔAICi AICWi E.R
D1 0.364 (0.323) 8.51 (8.82) 4.28 4.00 0.07 7.37 0.380 (0.345) 8.40 (8.68) 4.26 3.56 0.09 5.92
D2 0.366 (0.331) 7.22 (7.82) 3.96 3.67 0.13 6.27 0.388 (0.362) 7.09 (7.64) 3.92 3.22 0.11 5.00
D3 0.940 (0.731) 1.92 (4.26) 1.44 1.15 0.30 1.78 0.948 (0.786) 1.78 (3.79) 2.18 1.48 0.26 2.10
D4 0.987 (0.741) 0.828 (2.87) 0.29 0.54 0.973 (0.877) 1.23 (1.97) 0.70 0.54
Testing dataset values are shown in parenthesis.
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Figure 12: Hyperparametric tuning of DTR for D4.
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In Tables 2 and 3 and Figure 13, the performance score of
RFR models is reported well for all training and testing
datasets followed by DTR and MLR for D1 and D2. )e
performance score of RFR is found high for D3 training set,
while little bit variation is found for testing sets, and for D4
all models show performance above 90% for training sets
and only RFR approach to 0.877% for testing/validation
datasets, while DTR has 0.741 and MLR has 0.655. )e
RMSE of RFRM reported low for D1 and D2 for train and de
novo the same for test models.)e RFRM shows good for D3
train models, while MLR supersedes on slight extent for test
models. )e DTR performed well for D4 train model, while
for test model RFR supersedes the DTR.)eMLM train and
deployed for training datasets revealed the relation as
(R2

MLRM <R2
DTRM <R2

RFRM), (RMSEMLRM >RMSEDTRM >
RMSERFRM)for D1,D2 andD3, while for D4, all models show
high performance score as MLR� 0 .932, DTR� 0.987 and
RFR� 0.973. Data preprocessing optimized the model
predictability well for all datasets as all models upswing the
performance from original datasets (D1) to generated
datasets (D2, D3, D4) forMLM. In Figure 14, learning curves
(L.E) demonstrate the comparison for decomposition of
prediction error (P.E), and it is validated that RFRM revealed
lower prediction error simultaneously for D1, D2, D3, and
D4 prediction models as 17.08, 14.73, 5.57, and 3.2 followed
by DTR as 17.33, 15.04, 6.18, and 3.698 and MLR 18.35,
15.74, 6.49, and 5.26.

(P.EMLRMDi) >(P.EDTRMDi) > (P.ERFRMDi). RFRM
revealed good performance score and bottommost decom-
position prediction error as we advanced from D1 to D4.
RFRM successfully predicted the wheat productivity when
compared against other models using the original and gen-
erated datasets.

4. Conclusions

)is study integrated the efficacies of machine learning
regression algorithms using multiple linear regression
models (MLRMs), decision tree regression models
(DTRMs), and random forest regression models (RFRMs)
with benchmark traditional statistical models to converge
the optimization capability of prediction models for wheat
productivity. )e original dataset of 26430 (D1) crop-cut
experiment along with fifteen features is collected from the
crop reporting service. )e 2nd-stage area frame sampling is
applied to select the sample. )e new approach of centroid
clustering scheme is introduced which can enhance the
model performance by reducing the sample size.)ree more
datasets are generated to optimize the model performance
for both the machine learning models (MLMs) and tradi-
tional statistical models (TSMs). )e generated datasets
comprise from 6034, 145, and 36 sample points generated
from village, tehsil, and district-level centroid clusters. )e
75% dataset is used as training and 25% as testing subsets.
Evaluation metrics approach (R2, RMSE), Akaike infor-
mation criterion (AIC) with weights (AICW), evidence ra-
tion (E.R), reliability analysis, and decomposition prediction
error (P.E) are applied to compare the performance of
models. )e performance score (P.S) increased, while the
RMSE and AIC decreased for both MLM and TSM as we
advanced from D1 to D4 for MLRM. )e P.S and E.R re-
ported high (E.RTSM<E.RMLM & R2

TSM <R2
MLM), while

RMSE and AIC reported low (RMSETSM>RMSEMLM &
AICTSM>AICMLM) for MLM comparing with benchmark
TSM as we proceed from D1 to D4 for MLRM. )e MLM
based on MLRM has good prediction capability for all the
datasets, and D4 optimized the MLM.)eMLM trained and
deployed for MLRM is further trained and deployed for
DTRM and RFRM with the aim to get the most optimized
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model. RFRM revealed good P.S, bottommost P.E for all the
datasets. )e RFRM successfully predicted the wheat pro-
ductivity followed by DTRM and MLRM for D1, D2, D3,
and D4. It is demonstrated that machine learning models
provide superior performance by centroid clustering even
for sample size as we advanced from D1 to D4. )is study
demonstrated strong evidences for the implementation of
machine learning models as an alternative of traditional
statistical models for future research direction and correct
policy decisions regarding wheat productivity. )e ad-
vancement in science, technologies, and implementations of
innumerable agronomical constraints in various fields of
agriculture leads to immense volume of data, and this study
provides the detailed hierarchy of centroid clustering which
leads to increase the model performance by reducing the
sample size. )is hierarchy of centroid clustering could also
be extended to multistage centroid clustering for future
research, and it could also be applied for all supervised
machine learning algorithms to enhance the model
performances.
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